

MATERIALS FILE

May 2008

WORKING DOCUMENT

The study of materials allows the following question to be answered:

What is my object made of?

Observing and recognising the materials in the technical object allows the following question to be answered:

What is this material called? To which family does it belong? Knowing the characteristics and testing the properties of certain materials allows the following question to be answered:

Why is this material used?

Evaluating a material by its capacity to be recycled or destroyed allows the following question to be answered:

What becomes of this material after its use?

The study of materials in the technical object leads one to identify and resolve 5 technological problems:

Problem 1.

Of how many different materials is the object made and how can we spot them?

Problem 2.

To which family do the materials used in the object belong?

Problem 3. What are the physical and mechanical properties of these materials?

Problem 4. Why did the manufacturer choose these materials to make this object?

Problem 5. What impact do these materials have on the environment? What do we know about recycling them?

Drawn from the following website: <u>http://phares.ac-rennes.fr/techno/techno6/exi6.ppt</u>

The notion of plastic matter in the broad sense includes:

Organic materials that are:

- composed of macromolecules

- produced by the modification of natural substances by direct synthesis starting from substances extracted from petroleum, natural gas or coal.

Some elements that could enter into the composition of plastics: CHONS. (C) carbon, (H) hydrogen, (O) oxygen, (N) nitrogen, (S) sulphur

FIELD OF ORGANIC CHEMISTRY: Macromolecular substances.

Natural substances: Cellulose (wood), horns (hard protein material), vegetal resins, rubber (tree)

Artificial substances: Vulcanised rubber (sulphur treated), vulcanised fibre (hydrocellulose treated with zinc chloride), celluloid (nitrocellulose treated with camphor), galalith (casein treated with formaldehyde).

Here is a website where you will find excellent documents that you can order free of charge, including a comic strip on the history of plastics. http://www.spmp.org/

and the synthetic substances below:

THE MOST COMMON FAMILIES OF PLASTICS

THERMOPLASTICS : They can be heat molded without chemical modification and reversibly. They soften when heated.		
POLYOLEFINS	PE (polyethylene) PP (polypropylene)	
POLYVINYLCHLORIDES AND THEIR DERIVATIVES	PVC	
STYRENES	PS (polystyrene) EPS (expanded polystyrene) BS (butadiene styrene) ABS (acrylonitrile butadiene styrene)	

POLYACRYLICS	PMMA (poly methyl methacrylate)	
	PAN (polyacrylonifrile)	
POLYCARBONATES	PC	
FLUORO POLYMERS	PTFE (Polytetrafluoroethylene) Teflon®	
SATURATED POLYESTERS	PETP et PBTP	
THE	RMOSETTING:	
They can be heat moulded irreve	ersibly and with chemical modification and	
contain tightly me	eshed reticulated structures.	
They stay intact heated to the so	ame temperatures used for thermoplastics.	
POLYOXYMETHYLENES	РОМ	
POLYAMIDS	PA (Nylon, Kevlar®)	
UNSATURATED POLYESTERS	UP	
POLYCARBONATES		
AMINOPLASTS	UF (urea-formaldehyde)	
	MF (melamine formaldehyde)	
PHENOPLASTS	PF (formophenolic)	
EPOXIES	EP	
OLYURATHANES (2 families) PU		
E	ASTOMERS:	
They can be moulded with technic	ues comparable to those used in the rubber	
industry and contain lar	ge meshed reticulated structures.	
They take their shape again after having been compressed.		
ILICONES SI (in the form of: oils, aums, liquids or pa		
	and resins)	
RUBBERS	Natural et vulcanised	
POLYCHLOROPRENE	Neoprene®	
ELASTANE	Lycra® (Spandex)	

Metals are obtained from minerals, which by fusion and purification processes, are transformed into metals. Metal in its pure form is rarely used. Different metals are combined to obtain what are called **alloys** in order to attain the desired properties.

Metallic materials are classed into two categories: ferrous and non ferrous.

Ferrous metals: Their principal element is iron. Cast iron and steel are alloys of iron and +/- 2 % carbon. Cast iron is fragile and hard, whereas steel is tough, ductile and elastic. They have the particularity of being attracted to magnets.

Non ferrous metals are those that do not contain any iron. There are several types: copper and its alloys (brass and bronze), lead, zinc and nickel are all non ferrous metals.

METAL	COLOUR	HEAT OF FUSION (approximate)	COMPOSITION
Steel	Grey	Around 1535°	Iron and carbon (0.5% to 1.5%)
Stainless steel	Shiny grey	Around 1535°	Iron–Carbon with at least 10% chrome. (sometimes nickel, molybdenum or vanadium)
Aluminium	Metallic white	666°	
Bronze	Golden yellow	280° to 950°	Copper - Pewter
Copper	Red	1080°	
Pewter	Pure white	230°	
Iron	Greyish white	1500°	Carbon (0.1 to 0.5%)
Cast iron	White or grey	1100°	Iron and carbon (1.5 to 5%)
Brass	Reddish yellow	870° à 1000°	Copper Zinc
Lead	Blue white	330°	
Titanium	Shiny dark grey	1660°	Titanium, Aluminium, Vanadium
Zinc	Blue white	420°	

THE MOST COMMON METALS

WOOD AND ITS DERIVATIVES

Some species		
Eastern cedar	Red pine	Bitternut hickory
White spruce	Hemlock	Black cherry
Black spruce	Balsam fir	White oak
Red spruce	White birch	Red oak
Larch	Yellow birch	Silver maple
White pine	Pecan	Sugar maple
Grey pine		Linden

BILLES DE SCIAGE ET BOIS D'OEUVRE

Center for pedagogical development plastics_ST_EST_materials_file.doc

A composite material is an assemblage of at least two non miscible (that can not be mixed) materials but that together, has a good adhesive capacity.

Some composite materials	
Fibreglass	Very fine glass filaments that are generally associated with polymers (plastic resins).
Carbon fibres	This material is used in high performance recreational equipment (cycling, sailing) because it allows for reduced weight.
Plywood	Superposed layers of wood.
Particle board	Glued, compressed particles
Plaster board	Plaster contained between two layers of cardboard.
Concrete, reinforced concrete	Mixture of granulates (sand, gravel) usually bound by cement
Aramid fibres (Kevlar™)	Polyamide family in plastics

EVERYTHING YOU NEED TO KNOW ABOUT CERAMICS http://www.cerampilot.com/

http://www.ceramic-center.com

Some PROPERTIES OF MATERIALS

Physical properties	
Colour	Gas permeability
Transparency	Fusion point
Refraction index	Boiling point
Dilatation	Thermal conductibility
Water absorption	Electrical conductibility
Chemical properties	
Oxidation	Combustion
Degradation	Photo degradation

RESISTANCE OF MATERIALS

When a material is submitted to the force of an action, certain constraints are established within the material. This action brings about deformities. Parts of an object must resist the forces that they will have to bear. Their shape and dimensions must allow them to resist these forces.

Mechanical constraints that may be inflicted on a material		
Traction	$ \begin{array}{c} \Delta \mathbf{L} \\ \hline \end{array} \\ \hline \end{array} \\ F \end{array} $	This force acts on the axis of the part and tends to lengthen it. In material resistance, we must verify the longitudinal lengthening by applying a force of traction to each side of the material. In this way, among other things, we can obtain the maximal length which corresponds to the rupture point.
Compression		This force acts on the axis of the part and tends to shorten it. We verify how much it can be shortened by applying a compression force to each side of the material.

The material used for manufacturing a part must allow it to resist the forces mentioned in the above table.

All materials do not resist the same way to forces of rupture and wear.

In order to know how it will act, we have to make the part, submit it to the appropriate forces, note the deformities caused by the force and finally, determine the conditions under which it will rupture. This method, used in aviation, has the major inconvenience of being very expensive.

In the study of materials resistance, we only deform until rupture the simple test parts made with the materials used to make the parts.

Hardness	The capacity to resist penetration and deformation.
Stretch	The capacity to be stretched without breaking.
Elasticity	The capacity to take its initial form back when the force
	acting on the material is removed.
Resiliency	The capacity to resist assaults and to keep its shape
	after such assaults.
Malleability	The capacity to be shaped by tooling or to be made
	into sheets without tearing.
Resistance to corrosion	The capacity to resist salts and chemicals.
Toughness	The capacity to resist a force of traction.

INDUSTRIALS PROCESSES

How to use the labels

These labels were designed to be used in conjunction with the **« Industrials Processes »** animation. We want to warn teachers against the idea that the names of these processes are to be learned by rote – this practice is in fact, not at all recommended. Rather, we suggest that they be integrated into learning situations. They may be used in a number of ways.

When going through the analysis stages of a technical object, we may have to specify the process used during the fabrication of each part of the object. Rather than describe in words each process used, it could be useful to adjoin the labels to an illustration or photograph of the object connecting the label to the appropriate component, for example.

The labels may also be printed in large format and placed on the classroom or workshop walls during a manufacturing study. This would create an attractive visual for the students. Even better, find examples of applications of these processes in real objects that can be demonstrated to the students. They may also be used in a slide presentation or be printed and given to the students as a reference.

	FORMING PLASTICS			
LE THERMOPLIAGE	L'INJECTION	LE THERMOFORMAGE		
Thermo-folding is mainly used for tailor made, small quantity production of objects that are of uniform thickness.	Injection is mainly used in the mass production of objects with complex shapes or containing precise details.	Thermo-forming is mainly used for disposable objects or objects for which the quality of the finish is not an essential criterion.		
L'EXTRUSION	LE ROTOMOULAGE			
Extrusion is used for the continuous production of differently shaped formed objects.	Rotary moulding allows for the production of large hollow parts.			

Analysis of the cycle of life

The products we consume increase our ecological footprint far more than we can imagine.

Beginning with the extraction of raw materials and all the way to the elimination of residual materials, a product implies numerous stages throughout its lifecycle (manufacturing, transportation, conservation, etc.).

Yet each of these stages consumes energy and resources - in other words, each of them increases the ecological footprint of the product.

When we consume a product, the ecological footprint of its **lifecycle** becomes our own. Certain actions that we consider commonplace in everyday life actually sharply increase the footprint that we leave on the planet.

Have you ever thought about the implications of drinking a simple glass of milk? This implies:

- > an arable surface to cultivate the food consumed by the cows;
- the water used to grow the food and to water the cows;
- human and/or machine labour consuming energy for sowing;
- space for the elimination of waste produced by the cows;
- human and/or machine labour consuming energy for milking;
- more energy for the machines that treat the milk (pasteurisation, homogenisation, etc.);
- raw materials and again energy to package the milk in bags or

cartons;

- combustibles and again and always energy to transport the milk while keeping it cool;
- > the energetic needs of the refrigerators at the supermarket;
- the energy you will use to get to the supermarket;
- the energy used by your refrigerator;
- the natural resources required to eliminate the carton or bag that will be thrown in the garbage.

Think about it!

BIBLIOGRAPHY

Books

Société des Industries du Plastique du Canada. Les plastiques aujourd'hui et demain, mars 1990, 96 p.

GUILLEMETTE, André. Éléments de physique du bois, éditions FM, Laval, 1982, 153 p.

Web sites

TECHNOLOGICAL ANALYSIS http://technoargia.free.fr/cms2/?Techno:6%E8me

BIOMEDICAL MATERIALS http://www.infoscience.fr/dossier/biomateriaux/biomateriaux_som.html

EVERYTHING YOU NEED TO KNOW ABOUT CERAMICS http://www.ceramic-center.com

FRENCH SITE ABOUT WOOD http://www.site-en-bois.net/fr/accueil.phtml

PLASTICS IN OUR LIFE http://plastics.ca/?lang=EN

DIFFERENT TYPES OF PLASTIC MATERIALS http://www.cap-sciences.net/upload/sites/dossierspedago/Fiche6-différentsplastiques.pdf http://www.cap-sciences.net/upload/differents_plastiques.pdf

http://www.lesplastiques.com

http://www.plastics.ca/

http://www.recyc-quebec.gouv.qc.ca/Upload/Publications/Fiche-plastiques.pdf

Ministry of natural resources and fauna Quebec <u>http://www.mrn.gouv.qc.ca</u>

ECOLOGICAL FOOTPRINT http://www.agir21.org/flash/empreinteecoweb/loadcheckplugin.html

http://en.wikipedia.org/wiki/Ecological_footprint

http://www.mddep.gouv.qc.ca/jeunesse/jeux/questionnaires/Empreinte/Questionnaire. htm

TECHNOLOGICAL RESOURCES (ACADÉMIE DE REIMS) http://www.ac-reims.fr/datice/techno/ressources/6eme/ressources.htm

http://phares.ac-rennes.fr/techno/techno6/exi6.ppt