

développement Overview of the task « AST »

G	centre de développement pédagogique pour la formation générale en science et technologie	Working cloc Overview of the task « AST » The electric hydroplane	SUMAGNE
Target audience:		2 nd cycle of secondary school (4 th year) AST	
Team v	vork:	2 people	
Time required in class:		15 - 75 minute periods	

Pedagogical intention:

The first aim of this LES is to design a part to regulate a Reed switch motor (RSM). To do so, the student has to carry out several learning activities related to the scientific and technological concepts associated with electric motors. An analysis of the RSM allows the student to understand the scientific and technological principles of the missing part. While testing the RSM, the student will control its operation.

The second aim of the LES is to design a propeller that will propel the hydroplane. To do so, the student will carry out two learning activities related to the concepts associated to Archimedes' flotation principle and Bernoulli's principle of fluid dynamics. When testing the hydroplane, the student will control its operation with the objective of participating in a race to be held later.

NOTE: This LES was designed within the framework of training sessions. It will require adaptation before being used with students

Targeted disciplinary competencies:

C_d-1 Seeks answers or solutions to scientific or technological problems

The student must develop a design process allowing him to make the part that regulates the RSM and the propeller.

C_d-2 Makes the most of his/her knowledge of science and technology

The motor and the propeller constitute two of the applications which the student may study. His full understanding of the scientific and technological principles involved will allow him to control their operation.

Targeted cross-curricular competencies: C_t-4 Uses creativity

Broad area of learning Personal and Career Planning Focus of development: • Self-knowledge and awareness of his/her potential and how to fulfill it (recognition of his/her talents, strengths, interests and personal and career aspirations).	t
--	---

Worlds and	Material World:		
concepts that	Electricity		
may be involved	Ohm's Law		
N. B. The	 Electrical circuits Relationship between power and electrical energy 		
written in italics	Electromagnetism		
are broached in	 The forces of attraction and repulsion 		
the optional	Magnetic poles of normanent magnets		
AST (ES)	 Magnetic poles of permanent magnets The force of attraction and repulsion between two magnets 		
course	 Magnetic field of a solenoid 		
	 Intensity of the field in relation to the number of whorls 		
	 Intensity of the field in relation to the current 		
	 Intensity of the field in relation to the type of core used 		
	 The right hand rule 		
	 The force of attraction and repulsion between a magnet and a 		
	solenoid		
	Transformation of energy		
	 Law of conservation of energy 		
	Energetic output		
	Relation between potential energy, mass, acceleration and displacement		
	• (optional course)		
	• Relation between kinetic energy, mass and speed (optional course)		
	Fluids		
	Archimedes' principle		
	Bernoulli s principle		
	Forces and movements		
	 Relation between constant speed, distance and time 		
	Technological world:		
	Language of lines		
	 Multi-view orthogonal projection (overall drawing) 		
	Functional dimensioning		
	 Standards and representations (diagrams, symbols) 		
	Mechanical engineering (implicitly during design stages)		
	 Adherence and friction between parts 		
	 Linkage of mechanical parts (degree of liberty of a part) 		
	• Guiding function		
	Electrical engineering		
	 Supply function Conduction inculation and protection function 		
	Command function (magnetic switch)		
	 Transformation of energy function (electrical to mechanical thermal 		
	etc) Fabrication		
	Drilling		
	Measurement and control (form and position, angle)		

Techniques	Technology:			
	Graphical language			
	• Using instruments to carry out a graphical representation (e.g.: multi-view			
	orthogonal projection)			
	 Choosing the most explicit view of the technical object to be described 			
	Fabrication			
	• Using machine tools safely (e.g. band saw, press drill, disc sander)			
	 Making the part while respecting the steps of the following machining 			
	processes: stripping, splicing, soldering			
	 Sanding the faces or de-burring the edges of each part after fabrication (propeller) 			
	 Choosing the appropriate tools for assembly 			
	 In the case of electrical circuits, identify and gather the electrical components. 			
	 Connect the components using wire, connectors or solder 			
	• Evaluate the dimensions of a part using a ruler or a calliper during and			
	after fabrication			
	• Compare the actual dimensions of a part to the specifications (draft, plan,			
	technical file etc.)			
	 Proceed with making the part, applying the appropriate techniques 			
	Science:			
	 Adequate use of measurement instruments (e.g.: ampere meter, voltmeter) 			
Community	There has long since been in our surroundings, a sulture of inventiveness. You			
community	need only think of Rombandien and its dazzling development. This company is the			
resources	fruit of the passion of a single man Joseph-Armand Rombardier. This company is			
	now a multinational corporation that makes us all proud			
Possible evaluation: You will find trails corresponding to the evaluation criteria in the student booklet, though an actual evaluation grid is not supplied.				
Global context:				
This LES puts the	e student in the context of a friendly competition. The situation will end with a			
hydroplane race (at the school pool if possible or in class in a more modest basin). To do so, the			
student will have to:				
 Study the 	 Study the operating principles of the RSM; 			
 Make the 	RSM and design a regulatory part;			
 Test the RSM and control its operation; 				
 Design a propeller that will be installed on the RSM; 				
 Test the hydroplane and control its operation; 				

- Be measured against other prototypes during a race;
- Carry out an integration and reinvestment synthesis activity.